Bayesian Model Selection for Beta Autoregressive Processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Model Selection for Beta Autoregressive Processes

We deal with Bayesian inference for Beta autoregressive processes. We restrict our attention to the class of conditionally linear processes. These processes are particularly suitable for forecasting purposes, but are difficult to estimate due to the constraints on the parameter space. We provide a full Bayesian approach to the estimation and include the parameter restrictions in the inference p...

متن کامل

Model selection for integrated autoregressive processes of infinite order

Choosing good predictive models is an important ingredient in a great deal of statistical research. When the true model is relatively simple and can be parameterized by a prescribed finite set of parameters whose values are unknown, it is natural to ask whether a model selection criterion can exclude all redundant parameters, thereby achieving prediction efficiency through the most parsimonious...

متن کامل

Predictor selection for positive autoregressive processes

Let observations y1, · · · , yn be generated from a first-order autoregressive (AR) model with positive errors. In both the stationary and unit root cases, we derive moment bounds and limiting distributions of an extreme value estimator, ρ̂n, of the AR coefficient. These results enable us to provide asymptotic expressions for the mean squared error (MSE) of ρ̂n and the mean squared prediction err...

متن کامل

Bayesian Model Selectionof Autoregressive

This paper poses the problem of model order determination of an autoregressive (AR) pro ess within a Bayesian framework. Several original hierar hi al prior models are proposed that allow for the stability of the model to be enfor ed and a ount for a possible unknown initial state. Obtaining the posterior model order probabilities requires integration of the resulting posterior distribution, an...

متن کامل

Model Identification for Infinite Variance Autoregressive Processes

We consider model identification for infinite variance autoregressive time series processes. It is shown that a consistent estimate of autoregressive model order can be obtained by minimizing Akaike’s information criterion, and we use all-pass models to identify noncausal autoregressive processes and estimate the order of noncausality (the number of roots of the autoregressive polynomial inside...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bayesian Analysis

سال: 2012

ISSN: 1936-0975

DOI: 10.1214/12-ba713